x^2+12x=143

Simple and best practice solution for x^2+12x=143 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for x^2+12x=143 equation:



x^2+12x=143
We move all terms to the left:
x^2+12x-(143)=0
a = 1; b = 12; c = -143;
Δ = b2-4ac
Δ = 122-4·1·(-143)
Δ = 716
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{716}=\sqrt{4*179}=\sqrt{4}*\sqrt{179}=2\sqrt{179}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{179}}{2*1}=\frac{-12-2\sqrt{179}}{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{179}}{2*1}=\frac{-12+2\sqrt{179}}{2} $

See similar equations:

| 5b=20b | | 9/5x=8/5 | | Z^3-(2i)^3=0 | | 3x+2=5;(x=1) | | 10x=85+X=D | | x8x+5=2x-7 | | 10x=85+X=D. | | x+(x+1)+x(x+2)=66 | | 4X-10=3x±10 | | 8x-5/(7x+1)=-4/5 | | (2x+2)+(3x+6)=48 | | 2(x-5)+3=4x-2(5+x) | | 7x-2(2x+3)=6 | | (12x+3)=(7x+7) | | 4n+(6-2n)=2(n+3) | | 5x²+x=9 | | 5x²+x-9=0 | | 2x^2+77x+18=0 | | 18x^2+77x+2=0 | | 12-x=3x-8 | | -8x-14=7(2-4x+4x | | -2k^=-168 | | 34+2x=83-5x | | (0.20)(10)=0.05x+0.50(10-x) | | 9x+27=93-2x | | 9x+27@=93-2x | | 9(x+8)+2=-8(x-11)-9 | | -2(-4x+9)-3x=-8x+73 | | 1=0.4x+0.7x-8 | | -5(-8x+7)=-9=-124 | | x÷5+10=22 | | -4x-14x+13=-3x+3 |

Equations solver categories